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TWO-PHASE ABSORPTION COMPLICATED BY A
SECOND-ORDER CHEMICAL REACTION IN THE
LIQUID PHASE IN IRRIGATED CHANNELS

(A SOLUTION FOR THE FIRST QUADRANT OF THE
HYDRODYNAMIC PLANE. THEORY. CALCULATION)

V. N. Babak, T. B. Babak, and UDC 66.021
L. P. Kholpanov

Two-phase film absorption complicated by an irreversible chemical reaction in the liguid is studied on the
basis of a solution of diffusion transfer equations in the gas and liguid phases. The concentration distribution
of the soluble component and the reaction product on the interface is studied theoretically. The dimensionless
diffusion flow is calculated numerically as a function of the length of the channel with arbitrary controlling
parameters.

Formulation of the Problem. The general formulation of the problem of two-phase chemisorption of carbon
dioxide gas (A) by solutions of amines (B) is formulated in {1 ] at a carbonization a < 0.5. In this case the following
reaction takes place in the liquid phase between the compound being dissolved (A = COy) and the absorbent (B =
RNHj):

A+B=>C +H", (1)

where H* and C™ are ions of hydrogen and the bound state of A (RNHCOO™). A thin film (of thickness h) of
absorbent solution (the inlet concentration is Bg) flows down uniformly under gravity over the walls of a plane
channel (of width 2R) in contact with the gas flowing down (the inlet concentration is Cg). The practically important
case By >> KCy (or N = Bg/KCo >> 1), i.e., the chemical capacity of the absorbent is high, is considered. If it is
taken into consideration that between the concentrations [B] and [C™ ] local chemical equilibrium exists ([B] = Bg
~ [C™ D, the two-phase problem of chemisorption can be reduced to two-phase absorption with nonlinear conditions
of conjugation on the phase interface [1}:
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where VM = iVKBo/ Diq; Puq = VM tanh VM /N; Py = ef*VM tanh VM.
The dimensionless coordinates yg, Wiq, Xg» Xiiq are related to the Cartesian coordinates x and y by the
formulas

y=(R-h)y, =R~ hyjq, x= (hPe;g) x4 = (R Pey) x, .

The dimensionless concentrations of CO; in the gas (Cg) and of the reaction product RNHCOO™ in the liquid (C)
are determined as follows:

_ B
(Al=CoCq (x5, ¥p)» IC 1= 70 C (X4igs Miq) -

The solution of problem (2)-(4) depends on the four dimensionless parameters ¢, 8, N, M or any four
independent combinations of them.

In what follows, parameters that contain phase velocities will be referred to as hydrodynamic (for example,
¢, §) and parameters containing the reaction rate constant k are called chemisorption parameters (M, Pg, Pyq).

In [1, 2], in studies of two-phase chemisorption, it is recommended that the two hydrodynamic parameters
(eN) and (¢8N) be used (in physical meaning they are dimensionless capacities of the liquid {1]). For clear rep-
resentation of the solution, the rectangular coordinate system Xy — Yy was introduced (the hydrodynamic plane
for chemisorption: Xy = log (¢N), Yy = —log (¢8N)). The linear relation Xy =X + log N, Yy =Y — log N exists
between these two coordinates and the corresponding hydrodynamic coordinates for two-phase absorption X — Y
[31 X =log e, Y= —log ¢ff, where ¢ and ¢ are capacities of the liquid phase in absorption). This means that the
planes (X, Y) and (Xy, Yn) are shifted by log N along the axes (see Fig. 1).

Earlier {1, 4], the solution was studied in the second and fourth quadrants of the hydrodynamic plane
Xy — Yy, e, at small (eN < 1, ¢fN < 1) and large (N > 1, ¢fN > 1) capacities of the liquid.

In the present work a solution of (2)-(4) is obtained in the first quadrant, where the inequalities eN = 1,
efN < 1 (Xy = 0, Yy = 0) are satisfied. At any point of the hydrodynamic plane Xy — Yy, two other parameters
(they are chosen to be chemisorption ones) should "run through” all admissible values from zero to infinity. It is
evident that the choice of chemisorption parameters is arbitrary; however, following [I, 4], the dimensionless
thickness of the film VM (M is the Damkohier number) will be chosen as one of them. Studies carried out in the
second and fourth quadrants of the hydrodynamic plane show that VM has a little effect on the solution. The
establishment of one or another absorption regime (kinetic absorption, an instantaneous chemical reaction,
resistance in either of the phases) in the two-phase system depends mainly on the other chemisoption parameter
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(«), which was called controlling. The form of this parameter depends on the quadrant of the hydrodynamic plane
in which the considered point X and Yy lies: for example, in the second quadrant « = Pjiq [1, 2], and in the fourth
onex="Pg [4,5]

In what follows, from a theoretical study of the solution in different areas of the first quadrant, we find an
expression for x in this quadrant. Here, as the main calculated characteristic of chemisorption, we use the integral
dimensionless flow expressed in terms of the concentration of CO; in the gas (/). This flow is related to the
corresponding flow X expressed in terms of the concentrations in the liquid by the material-balance equation

1 1
I=1~ [ UC,dy, = eN [ U Cdy;q = eNZ . )
0 0

We investigate the solution of general problem (2)-(4) at different points of the first quadrant where the
solution is known or can be obtained analytically.

The Solution on the Axis Yy (eN = 1, ¢8N < 1) [2]. Since the positive axis Yy belongs simultaneously to
the first and second quadrants, on this axis the solution can be obtained as the particular case of the solution for
the second quadrant at eN =1 [1]. Here, Py;q is the controlling parameter. As the longitudinal coordinate, we chose
the dimensionless coordinate Z, which, in view of the equality ¢éN = 1, is expressed as follows:

7= Plziqxqu at Py =1 _ ngg at k=1, (6)
Pliqx"q at P“q >1 Pliqx"q at «x>1,

where « is the chemisorption parameter, determinmed from the formulas

P . ™
eN  (¢BN)’

As was shown in {1 ], with a large chemical capacity of the absorbent (N >> 1), at a certain distance from
the inlet to the channel, on the interface, the concentrations always satisfy the conditions Cg; = 1, C; << 1. This
section of the channel was called the initial section of chemisorption. Here, the chemisorption resistance is
concentrated in the liquid phase, and reaction (1) can be considered a chemical reaction of the pseudofirst order
(B = By). The solution of this single-phase problem was found in {6 ). In particular, for the dimensionless diffusion
flow I(x), at Xiiq >>1/M, a linear relation was obtained, which is expressed in the adopted notation as

I = (eN) Py = Pyxy - @®

This is the regime of a rapid chemical reaction with transfer resistance in the liquid phase. In the dimensionless
coordinate Z of (6}, relation (8) has the form

Z at k=<1,
I= $)]

VA
< at «>1.

Formulas (9) are true until the inequality Z << 1 is satisfied.

A monotonic increase in the concentration C;(Z) from zero to unity in a section of dimensionless length
Z ~ 1 is a characteristic property of the solution of problem (2)-(4) on the vertical line X = 0. Outside this section
(Z >> 1), when the concentration on the interface approaches saturation (C; = 1), the dimensionless flow I(Z) is
determined analytically:

L) 2
I=>eNZ =eN|[l- ——2——Texp l:—nz (n+%) x"q:l . (10)
n=90 2 +—1‘
T \n+5
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This means that in the system an instantaneous chemical reaction starts. Under this condition, at the interface the
absorbent concentration is (B); = 0 [7, 8 ]. Subsequently, this condition is preserved at any Z.

Thus, it is sufficient to obtain the solution of problem (2)-(4) only in the restricted range of the
dimensionless length Z ~ 1 in the so-called section of two-phase chemisorption. Outside this section (at small and
large Z), the dimensionless flow /(x) is determined analytically from formulas (9) and (10), respectively. In the
section of two-phase chemisorption, where in the general case diffusion interaction of both phases should be taken
into consideration, the function /(Z) is formally a four-parameter function that depends on Xy, Yn, &, and VM.
However, as was shown in [2], everywhere inside the second quadrant, for Z(Z) (and, consequently, also for I(Z)
on the axis Yy = 0, where ¢N = 1), the number of controlling parameters can be decreased.

Indeed, at small x (in practice, log k < 1), the function /(Z) is two-parameter, since it coincides with the
solution of the ordinary differential equation

R )

dI I
=Z=4[1-= 1-1), 1(0)=0. (1)
dz \/[ eN] tanhv M ¢ f ©

This solution is denoted subsequently by Io(Xy, VM, Z). On the axis Yy = 0, it depends only on VM, and at
large and small VM it can be obtained analytically [9]:

zZ/(1 + 2) at VM =0,

, 12)
1—1/(1+§) at VM = o,

1,0, VM, 2)=

The difference between these limiting curves is within 10%. In view of the monotonic dependence of Iy on VM, it
can be stated that on the axis Yy the effect of the parameter VM on the solution is weak.

At moderate « (parameters log x = —1), the function 1(Z) is three-parameter, depending only on Xy, Yu,
and k. This follows directly from the definition k = Pjjq = (VM tanh (VM))/N and the condition N >> 1. In this
case, in the general formulation (2)-(4) VM = o, tanh [VM(l — Ci)Vz]/ tanh (VM) £ 1 can be assumed. The
corresponding solution will be denoted subsequently by I(Xy, ¥n, &, Z2) = I(Xn, YN, ®, &, Z). Thus, at fixed Xy,
Yy, it is sufficient to investigate the general problem only at VM = .

At small « the corresponding solution I(Xy, Yy, &, Z2) = [p(Xy, «©, 2), i.e., Xy, Yn, £, Z) continuously
transforms into Io(Xy, VM, Z). In [2], this characteristic of I(Xy, YN, VM, «, Z) is called the property of
“splitting.”

The three-parameter function I(Xy, Yy, €, Z) admits substantial simplification not only at small but also
at rather large «. In this case, in the section of two-phase chemisorption (Z ~ 1) there are diffusion boundary layers
in both phases, and the problem is reduced to a two-phase formulation:

2 2
aC acC aC a¢C
Uy=E=—2E, Uyy=—=—",
8 9Z ayg.-l q9Z ayﬁq_i
aC 172 aC ac

— = -c)"?c,., —&=—(g , (13)
ayliq.i ( l) & ayg.i ( ﬂN) ayliq.i
aC aC
__g_=0 at yg.i=°°’ =0 at y“q.i=°°,

g i MWiq.i

Cg=l, C=0 at Z=0,

1003



where similarity variables are introduced in the transverse (yy; = BPiiq(l — ¥g), Migi = Puq(l — Nig)) and
longitudinal (Z = Plziqx“q) directions.
The solution of problem (13) is denoted by I;;y and is represented in the form

eN 1
=l = ;;q‘znm (Y Z) = ¢ Zjig (YN Z) (k> 1) (14)

or

Ik = Zyiy (Y, 2) (19)

o0
where the function X, (Z) = ) CUﬁqdy“q.i is the integral flow in the liquid and depends only on Yu. At Z >> 1, the
0

asymptotic value of this function is 2/Vz)VZ.

The Solution on the Axis Xy (¢N = 1, ¢BN =1 [5]. Since the positive axis Xy belongs simultaneously to
the fourth and first quadrants, the solution on this axis can be obtained as the particular case of the solution for
the fourth quadrant at Yy =0 (¢fN =1) {5]. Here Py is the controlling parameter, which at ¢8N =1 coincides with
«x determined from formulas (7). Accordingly, the coordinate Z introduced in terms of x; and Py for points of the
fourth quadrant coincides with definition (6) (the second equalities) on the considered axis, since

ngg at Pgsl= ngg at =<1,

Z= 3 2
ngg at Px>1 ng,iq at «x>1.

(16)

It can easily be shown that in the initial chemisorption section (Cg; = 1, C; << 1) the dimensionless flow /(Z) is
the linear function (9).

A monotonic decrease in the surface concentration Cg;i(Z) from unity to zero in the section Z ~1 is a
characteristic property of the solution of general problem (2)-(4) on the horizontal line Yy = 0. At Z >> 1, when
Cgi = 0, the problem becomes a single-phase one, and /(x) is determined analytically:

x

I=I,(x)=1- 2 ————2———exp -t (n+l)2x (17)
T T \gl T 2( 1)2 2 gf "
n——~

n=0

At these large Z transfer resistance is fully concentrated in the gas phase, and in the system maximum absorption
of CO; occurs. This condition is preserved subsequently at any x.

Just as on the axis Yy = 0, in the region of transition from rapid reaction (8) to maximum absorption (17),
i.e., in the section of two-phase chemisorption (Z ~ 1), it is sufficient to study the solution of general problem
(2)-(4) only for the case VM = o, since an effect of VM on I(2) is observed only at small x = Pg(log « < —1),
when I(Z) coincides with the solution of two-parameter problem (11): I =~ Ig(Xy, VM, Z). In the general case, on
the axis Xy = 0 the effect of VM on this function is also weak and decreases monotonically as X increases. It is
maximum {(~10%) at Xy = 0 (see (12)) and almost disappears at Xy = 0.5. In the latter case the following
analytical formula is valid:

Ip=1—-exp(-2), (18)

which is independent of any parameter.

In the other limiting case, at rather large «, in the section Z ~ 1, in both phases there are boundary layers,
and, consequently, 7(Z) can be obtained from simplified formulation (13), in which it is necessary to set ¢fN = 1.
In this case I(Z) is proportional to «, and the product «/ is independent of any parameter in (14). It should be
noted that simultaneous satisfaction of the conditions Cg; = 0, C; = 1 at Z >> 1 is a characteristic property of the
solution of (2)-(4) on the axis Xy (¥Yy = 0). This means that in the system a regime is developed that is
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simultaneously maximum absorption (17) and instantaneous chemical reaction (10). It can easily be shown that
this occurs in the section Z >> 1, x; << 1. For the two regimes the dimensionless flows coincide in this region:
2 2
Io (x) = ~=Vx, = eN =V, .
v v

However, unlike maximum absorption, instantaneous chemical reaction takes place only in the section
Z>>1, xg<<1. As shown in [5], in the region x; = 1, the gas phase is fully depleted (Ig = 1), and the
concentration Cij(x) deviates from unity.

The Solution of the Problem near the Origin of Coordinates (Xy = Yy = 0). In this area of the
hydrodynamic plane, characteristics dimensions for the gas (RPeg) and liquid (hPejq) phases coincide (eN
= ¢fN = /32 =~ 1), and, consequently, the dimensionless lengths Z introduced for the second and fourth quadrants,
respectively, also coincide (see (6) and (16)). At Z>> 1, the conditions C; = 1, Cg.i = 0 are satisfied almost
simultaneously, and therefore, in the system, chemisorption occurs, which can be considered both an instantaneous
chemical reaction and maximum absorption. It is evident that in this case the equality Jo(xg) = eNZi(x“q) is valid
and is not violated as the length of the channel increases further.

We investigate the solution of system (2)-(4) at interior points of the first quadrant, where the inequalities
eN > 1 and ¢8N < 1 are satisfied.

The Solution at ,82 << 1. The relation ,82 = RPegy/ hPej;q remains constant on inclined straight lines parallel
to AC (Fig. 1). We obtain a series of analytical solutions on the straight lines ﬁ2 = const << 1 for the following
cases: a) xg << I; b) x5 >> 1, xjiq << 15 ) xj;9 >> 1.

It is evident that in case (a) xz << 1 (consequently, xjq << 1), there are boundary layers in both phases.
In the initial section (Cg; = 1, C; << 1), a solution of (2)-(4) exists in the form [1]

172 2 2 v ]
1 - Cg =Py (xg) E [exp (- r/g/4) - —2-118 erfc (r]g) + .., (19)
172 2 2 v ]
C = Pyq (x5q) ~~ —— {€xp (— 13ig/4) — — Wyq erfc () | + - > (20)
v 2

where 575 = (1 — yp)/Vxg, Miq = (1 = Ygd/ VXiiq-
On the surface of the film at Z << 1

2 2
C,i=1-P,—Vx, =1—(N)—VZ; 1)
& Ew ¢ ¢ N)w?
Ci pand Pll '_2 quq = 2 VZ . (22)
VT vx

Here Z = Pﬁqxﬁq. Since C; < 1, from (22) it can be suggested that at Z = 1 the concentration C; = 1. In the latter

case at Z >> 1 a solution of (2)-(4) exists in the form
1 — C, = (BN) erfc (1), C = erfc () » (23)
and the concentrations on the interface are
Cpi=1—¢fN, C;=1. (24)

Formulas (23) and (24) are not asymptotic and are valid on a limited interval of length xg << 1. Sub-
sequently, at a distance from the inlet x; >> 1, x; q << 1, when the diffusion layer grows in the gas, the equality
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Cg = Cy i(x) is satisfied in this region formulas (23), (24) for the gas phase become invalid. The concentration
distribution in the gas can be obtained from material-balance equation (5):

Cei=1 —eN—z—\/xl- at x
23

" >, X <<l (25)
It follows from (24) and (25) that in the gas phase, in the section xgz >> 1, xjjq < 1/ (eN)2 < 1, the concentration
falls from an intermediate value (1 — ¢8N) to zero. Subsequently, 1/ (£N)2 << Xxjiq, in view of the fact that the gas
phase is fully depleted (C; = 0, I = 1), and in the liquid the distribution C(x, y) is obtained from a simplified
single-phase formulation:

ac _dc ! 2 1
Uiq—— =5 J UyCiq=—- (26)
X Mg O eN

It can be verified that in the section Xjiq << 1 a solution of this problem exists in the form

L1 exp(—15q /%) 11 1 an
T eNVE Vg " N VT Vx
At x;._ >> 1, when the boundary layer grows in the liquid as well, the solution of (26) is trivial:
liq
! 28
CG=N (28)

We find necessary and sufficient conditions whose satisfaction ensures approximations (19)- (28) In view
of the fact that the transition from a rapid reaction to an instantaneous one occurs atz ~1 (xIlq ~1/ an) (see (21),
(22)) and the transition to solutions (27) and (28) occurs at Xjig ~ 1/ (eN) , it can be concluded that a necessary
condition for the existence of the suggested mechanism of absorption is satisfaction of the inequality:

/P << 1/(eNY! or k> 1. (29)

It can easily be seen that the last condition is simultaneously sufficient. This will be shown for distances
xg >> 1 from the inlet, since at x; < 1, the approximate equality C; =1 (Z>>1) is unquestionable (see (24)).
Integrating the transfer equation in the gas phase (2) with respect to y; from zero to unity, we have

acC aC
a—& :—a—ﬂ at x,>>1.
Y6, %%

Substituting the above equality into boundary condition of conjugation (3), we obtain an equation for C(x):

dcC.. . 172 tanh [m (1 - C) 1
- —&! /e =P, (1-C ! (30)
/ & 8 ) tanh VM

where Cy j(x) is determined from (25).
In the region Z >> 1 at « >> 1, the approximate solution of Eq. (30) is equal to

2
11 2
1-C =—— 1 —eN—Vx; .
‘ z/[ Vi "“]
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[t can be seen that C(x) = I almost everywhere at x;;, < (7/ 4)(eN)2. A noticeable deviation of C; from unity occurs
only in the region x;;, >> 1/(eN)? (see 27)).

We have proved that the mechanism of absorption suggested above really takes place at £ >> 1 and that
this condition in necessary and sufficient for its existence. As can be seen, at rather large « >> 1, in the section of
two-phase chemisorption (Z = 1), the function /(Z) depends only on Yy and «. In the case in which boundary
layers exist in both phases, the dimensionless coordinates Z = Pﬁqx“q, Yiiqi = Pjig(1 — y,iq), and Ygi = PigB(1
— ¥ can be introduced in (2)-(4). After that, we arrive at simplified formulation (13) and, consequently, at
formula (15). Since at « >> 1, in the section of two-phase chemisorption (Z = 1) the inequality 7 << 1 is valid, this
implies that the gas phase is mainly depleted at distances Z >> 1 from the inlet in the case of instantaneous chemical
reaction (10).

The solution of general problem (2)-(4) will be studied at ﬂz << 1 and in the case of rather "weak" chemical
interactions (x << 1). In this case substantial simplifications can also made. It can be assumed that at rather small
k<< 1, in the initial section of chemisorption (Cg; = 1, C;<< 1), the inequality Xjjq >> 1/ (eN) (or xg >> 1/
/ (t:ﬂN) > 1) is satisfied. This inequality implies that the boundary layer grows through the entire gas phase and,
consequently, Cg = Cg j(x). It is evident that in the initial section the concentration distribution is determined by
formulas (20) and (22). Here, it is assumed that Xjjq < 1. Taking (5) into consideration and introducing the
dimensionless coordinate Z = Pgx,;, we obtain

Cp=1-2, G=VE=VZ at z>»1, xg<l. @31)
Vi

If it is assumed that in the section Z ~ 1 the gas phase is depleted almost completely (Cg; = 0, I = 1),
then in the region Z >> 1, in the liquid, the concentration distribution can be obtained from simplified single-phase
formulation (26). In particular, on the interface (see, (27), (28))

i S S S S g < 1,

eN\/—xhq Vo vZ

_1' at x"q >>1.
eN

32
@)= ©2

As can be seen from formulas (31) and (32), at Z = 1, on the curve C;(Z) a maximum with order of
magnitude 1 > Cimax = V& = 1/¢eN is observed. This means that with rather weak chemical interactions
instantaneous chemical reactions (C; ~1) are not observed at any lengths of the channel. Since 1/¢eN is an
asymptote for Ci(x), and at « > 1 the equality Cj gnax = | holds, it can be assumed that the condition Vk > 1/eN
is sufficient for the existence of a maximum on the curve Cj(x). If the reverse inequality vk < 1/¢N is satisfied,
the maximum disappears from this curve and the surface concentration becomes a monotonically increasing function
of Z. In this case it can easily be shown that in the section of two-phase chemisorption, boundary layers completely
occupy both phases, the flow I(Z) satisfies problem (11), and the following equalities are satisfied:

Ci = Io (Z, XN’ \/]T’I_)/GN, Cg.i =1- 10 (XN’ \/_M—, Z) .

In this case the chemical reaction has the same rate throughout the entire thickness of the film (the kinetic regime).

It should be noted that at k << 1, the equality I = Iy(Xy, VM, 2Z) is always true, irrespective of the presence
of a maximum on the curve Ci(Z).

The foregoing analysis suggests that on the straight lines ﬂ2 = const << 1 (just as on the vertical Yy = 0
and horizontal Xy = 0 lines) the dimensionless complex « has all the properties of a controlling parameter. The
type of absorption regime that will be established in the two-phase system depends on its value, and the effect of
the second chemisorption parameter VM can be virtually neglected.

Summarizing the foregoing theoretical study, it can be suggested that irrespective of «, beyond the section
of chemisorption (Z >> 1), inside the first quadrant the dimensionless flow /(Z) is determined analytically, and
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1(Z) = min {eN 2 (%iig)s 1eo (xg)} at Z> 1. (33)

The above relation answers the question about the possibility of realization of an instantaneous chemical
reaction. It is evident that this regime occurs only for rather strong chemical interactions « >> 1) at distances
Z >> ] from the inlet. It should be emphasized that it is preserved almost until complete depletion of the gas phase:
I = eNZ, < 1. In particular, at the boundary between the first and second quadrants (Xy = 0), irrespective of x,
the inequality eNZ, < I, is satisfied, and consequently, / = eNZj(xjiq) if Z >> 1. This is reasonable since this
transition is observed everywhere inside the second quadrant [1] and, consequently, for points on its boundary.

Accordingly, at Yy = 0 the reverse inequality I, < eNZ, is satisfied, and consequently, J = I.(xp) if
Z >> 1. This transition is typical of the whole interior of the fourth quadrant [5].

In a numerical investigation of problem (2)-(4), in the section of two-phase chemisorption (Z = 1), it is
sufficient to consider only the case VM = o, i.e., to obtain a solution of just the three-parameter problem /(Xy,
YN, &, Z). The effect of the parameter VM is observed only at x << 1 (in practice, at log ¢ < —1), where I(Xy,
Yn, &, VM, 2Z) = I(XN, YM, Z). This follows directly from the last equality and definition (7) of x expressed in
the form VM tanh VM = NeNk. This property of the solution of (2)-(4) was called the property of "splitting" (1,
4).

Numerical Approximation of the Two-Parameter Problem (11). Equation (11) was integrated by the
Runge—Kutta numerical method in [5] for the following ranges of the controlling parameters: —0.4 < log VM =
< 0.6, 0 < Xy =< 0.5. The results of the calculations were presented in the form of the following approximating
formula:

Iy Xy, VM, Z) = Iy (X, 0, Z) + (log VM + 0.4) (Lo (X, ©, Z) — Iy (Xy, 0, Z)
34
at — 04 <logvM <0.6, 9

where the analytical expressions for the corresponding flows for large (VM = «) and small (VM = 0) VM values
of are equal to {9]

o 2 ! 21 4N =1 = 17eN) 2 Pexp [~ (1 - 17eN)! 2 2]
eN eN| 1—eN[l=(=1/eN)"Pexp - (1 - 17eM)/? z]
35
at VM = o, (39)
1 — exp [— (ML; l) Z]
at vM = 0. (36)

1 —exp [-— (E——eN_) Z] /eN

In spite of the fact that the above formulas seem bulky, the difference between them is not large: it is maximum
(= 10%) at X =0 (see (12)) and decreases monotonically as this parameter grows. At X, = 0.5 this difference
almost disappears, and formula (18) is valid. A check shows that at log VM < —0.4, the relation Iy = Io(Xy, 0,
Z) holds, and at log VM = 0.6, the relation Iy = Io(Xy, «, Z) is valid.

A Numerical Study of the Three-Parameter Problem (VM = ). The dimensionless flow I(X N, YN Ky Z)
was calculated at discrete points of the first quadrant0 < Xy < 1,0 < Yy < 1 (AXy=AXy=0.125) by the method
described in {1]. The solutions obtained are almost the same as the corresponding ones for the fourth quadrant
[3]: results of calculations of I(Z) at any fixed point of the hydrodynamic plane will be expressed in the form of
one-parameter curves (the parameter x). Here, it is necessary to distinguish between the cases of "large” (log
« = 0) and "small” chemical interactions (log £ < 0). In the first case the logarithm of the product log («I) of (14)
is plotted on the ordinate, and in the second, log 1(Z). The abscissa is log Z.

In the case of "large” chemical interactions (log « = 0) the calculations show that the effect of Xy and Yy
on «1(2) is not very strong and in the general case it is monotonic, because of which it was possible, just as in {5],

1008



a log N g log (k1)
04 1 5 04}
02 g 02}

i -1.0;
-1.21 -1.2
Fig. 2. Numerical calculation of the dimensionless flow at log £ = 0 on the
horizontal lines Yy = 0 (a), 0.25 (b), 0.5 (c), = 1 (d): even curves are Xy =
0, odd curves are Xy =0.25; 1, 2) log« = 0; 3, 4) 0.2; 5, 6) 0.4; 7, 8) >0.6;
inclined lines I and II are asymptotic relations (9) and (15), respectively.

to present clearly the functions log () at constant Yy in separate figures. For Yy =0, 0.25, 0.5, ! this shown in
Fig. 2.

As can be seen, all the curves log («/) are monotonically increasing relative to log Z, whose asymptotic
values are known: if log Z < —1, then xI = Z (curves I); if log Z = log (Plziq/eN) =~ 2«, then xI = «, since at
Xiq = —1/ (eN)2 the function 7 = 1 (25). Moreover, at rather small Z (log Z < log Z*), the dependences kI =
Ziuim(Yn, Z) (curves 8 in Fig. 2), i.e., in accordance with the general theory we arrive at approximation (14), when
it is possible to assume that boundary layers exist in both phases. The value Z* at which this transition occurs
depends mainly on « and increases monotonically with this parameter. In the case of rather intense chemical
interactions (in practice, at log £ = 1), in the entire section of two-phase chemisorption —1 <log Z < L.§, the
equality «J = 3;(Yy, 2) is satisfied, and consequently, numerical calculations are not needed since at log
Z < 1.5 curves 8 can be used, and at log Z 2 1.5 the approximation X; = (2/Vr)VZ always holds (curves II in
Fig. 2), i.e., in accordance with the general theory I = eNEi(xliq) (10). This regime is an instantaneous chemical
reaction.

We study the effect of the hydrodynamic parameter Yy on the solution I(Xy, Yn, k, Z) at log « > 0.
Numerical calculations show that it occurs only at Yy < 1. At rather large Yy, in formulation (2)-(4), assuming
formally eNB = 0, we can neglect transverse changes in the concentration in the gas phase, since the concentration
Cg; starts to deviate from unity at distances x; >> | from the inlet (see, for example (21), (24), and (25)). As a
result, system (2)-(4) is reduced to a single-phase problem:

2

y ¢ _9¢C (37)
lig 2
0Xjiq Mg
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acC) _ 172 _
(———ay“q) , = Pyiq (1r-ac Cei (x) at Yiq = 1,
(3%)
aC
5%;-:0 at yuq=0, C=0 at x“q=0,

where Cgi=1 — eNZ(an). With account for definitions (16) and (7) for Z and « , it can easily be seen that at
rather large ¢8N >> 1, the dimensionless flow J/(Z) actually depends on just one hydrodynamic parameter Xy.
Calculations show that everywhere above the horizontal line AB the plots shown in Fig. 2d can be used. Analysis
of the curves presented in Fig. 2 shows that in the range 0 < Yy < 1, the effect of Yy on the solution is not very
strong, and with high accuracy a linear approximation can be used for intermediate Yy. As regards the effect of
the second hydrodynamic parameter Xy on the solution at log x = 0, it can easily be seen from Fig. 2 that it is
observed in practice only in the narrow band 0 < Xy < 0.25. In the general case it can be assumed that the effect
is also linear and the approximating formula

log [ (Xp, Yy, &k, Z)) =log kI (0, Yy, &, Z)] + 4X), {log (1 (0.25, Yy, &, Z)] -
— log (I (0, Yy, &, Z) 1} at 0 < X, <025 (39

is valid.

At any fixed Yy and «, in the range Xy = 0.25 the function I(Xy, Yn, «, Z) ceases to depend on X and
coincides with I(w, Yy, &, Z) (curves 1, 3, §, 7 in Fig. 2). Such solutions that do not depend on Xy were denoted
by Iy(x, Y, Z) in [4]. Just as in the cited work, it can be easily shown that this function is a solution of the
simplified diffusion formulation depending only on Yy and « and obtained from (2)-(4) formally at eN = o.

The domain of definition of the function /y(Z) depends mainly on «. For example, as was noted above, at
log x = 0, this is the half-band Xy = 0.25. At rather small « (in practice, log « < —1), when in accordance with
theoretical results (11) the approximation /(Xy, Yn, &, Z) = Ig(Xy, «©, Z) is valid, the domain of definition of Iy
is Xy = 0.5 (see (18) and (34)), i.e., it can be assumed that as & decreases, the domain of definition of Iy(Yy,
K, Z) is narrowed in the general case. However, it can easily be seen that the maximum difference between the
functions log [xI(k, 0.25, Yy, 2)] and log [«I(k, 0, Yy, Z) is not very large (less that 109,), so that at log
x = 0, everywhere inside the first quadrant / = Iy (curves 1, 3, 5, 7 in Fig. 2) can be assumed in practical
calculations, i.e., the effect of Xy on the solution can be neglected.

As concerns "small" chemical interactions (log £ < 0), just as was shown in (2, 4] for the second and fourth
quadrants, in this case numerical calculations are absolutely unnecessary, since at any point of the hydrodynamic
plane Xy, Yy, 1(Z) can be expressed with sufficient accuracy in terms of the corresponding functions for two values
of the chemisorption parameter «: log £ = 0 and log x = —1 by means of the approximation formula

log I (k, Xy, Yy, Z) =log I (1, Xy, Yy, Z) + (log «) [log Iy (X, Z) —
—logI(1, Xy, YN, 2Z)] at —1<logk=<0, (40)

where I(1, Xy, Yn, 2) is the target function at log « = 0 (for example, for Xy = 0 and 0.25, curves 1 and 2 in
Fig. 2). At fixed Yy, for any Xy these dependences can be determined from formula (39) if 0 < X, < 0.25, while
if X = 0.25, then I(1, Xy, Yy, Z2) = I(1, », Z) = I (the odd curves in Fig. 2). As was noted above, in practice,
the dependence on Xy can be neglected and the last equality can always be used. As an example, in Fig. 3 one
can see typical calculations of Ik, Xy, Yy, Z) at the central point Xy = Yy = 0. As can be seen, at
—1 < log k < 0, the effect of log « on the solution is almost linear, and at rather small log « < —1 the dimensionless
flow coincides with the two-parameter function Ig(Xy, Z) (curve 3). The absolute error in calculation of /(X, Xy,
Yy, 2) from formula (40) I(1, Xy, Yy, Z2) = Iy is usually within 0.02.
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Fig. 3. Numerical calculation of the dimensionless flow at log « < 0 at the
point Xy =0, Yay=0:1) logx =0, 2) —0.4, 3) log « = —1; inclined straight
line I is asymptotic relation (9).

Conclusions. A theoretical and numerical study of two-phase chemisorption was carried out in the first
quadrant of the hydrodynamic plane (Xy = 0, Yy = 0) at large chemical capacities of the liquid phase (N >> 1).
The features of absorption were found for this region.

It is shown that the occurrence of one or another regime in the system that is, as a rule, known from the
literature depends mainly on two criteria: the dimensionless length of the nozzle device Z of (6) and the
chemisorption parameter x of (7).

In particular, at small Z (log Z < —1) chemisorption resistance is fully controlled by the liquid phase (Cg
= 1), and the concentration of the absorbent is [B] = Bg. The latter means that these "short" channels are
characterized by a chemical reaction of the pseudofirst order. A general study of this problem (at arbitrary x) was
carried out in [6]. For the particular case VM >> | an analytical solution is known [10]. :

In the other extreme case (where log Z = 1), solution of the problem of chemisorption in two-phase
formulation (2)-(4) is unnecessary, since the dimensionless flow 7(x) is determined analytically by (33). It can be
stated that in a sense at large Z the solution in the first quadrant takes an “intermediate" position between the
corresponding solutions for the second [1, 2] and fourth [4, 5] quadrants. It should be remembered that in the
second quadrant at Z>> 1 the transition / = eNX;(x;;) occurs (an instantaneous chemical reaction) and in the
fourth quadrant the transition I = I, (xg) takes place (maximum absorption, transfer resistance is concentrated in
the gas). Both transitions occurred irrespective of the valve of the controlling parameter «.

In the region considered (the first quadrant) one or another transition is observed, depending on the value
of x: at log x = 0 the flow / = eNZi(x“q), while at log x < 0, I = Ip(xp).

Thus, it is sufficient to carry out numerical studies of two-phase chemisorption for the limited range
—~1 =< log Z < 1 in the so-called section of two-phase chemisorption. Diffusion interaction takes place only in this
region, i.e., on the phase interface the concentrations Cg; or C; cannot be constant. As follows from general
formulation (2)-(4), formally, the target function, which is equal to I(Z) if log x < 0 and to «1(2Z) if logx = 0,
depends on the four dimensionless parameters Xy, Yn, &, VM ; however, as was shown by the foregoing theoretical
studies and numerical calculations, depending on the concrete values of these parameters, substantial
simplifications can be made, which consist in the following:

1. The effect of the hydrodynamic parameter Yy is not very strong and is observed only in the limited
range 0 < Yy < 1. Above the horizontal line AB (Fig. 1), one can use the limiting solution Ix(Xy, x, Z) (see (37),
(38)): the plots in Fig. 2d if log « = 0, or formula (40) if log x < 0.

2. In the general case the second hydrodynamic parameter Xy has an effect in the limited range
0 < Xy < Xpy- Its width (Xyy) depends mainly on the chemisorption parameter «: at log & = 0, Xpy = 0.25 (see
Fig. 2), and as « decreases (in the range log « < 0) Xyy increases monotonically, reaching its maximum Xyy =
0.5 atlog k < —1 (see (18), (34)).

3. The chemisorption parameter « exerts the main effect on the dimensionless flow I(Z). At rather high

values of it (in practice, at log x =2 1), «I = Z,. (Yy, k, Z) (curves 8 in Fig. 2, formula (15)). In the range

lim
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0 < log x < 1, the plots shown in Fig. 2 can be used with the help, if necessary, of linear approximations in log «,
Ywn, and Xy. It should be noted that for most technological calculations the effect of the hydrodynamic parameter
Xy can be neglected in the region log x = 0, i.e., approximation (39) is practically the same as Iy(x, Yy, Z). In
the case of "weak" chemical interactions (in practice, log « < 0), in the general case Xy cannot be neglected;
however, in this region numerical calculations are unnecessary since /(Z) can be obtained from the approximating
formula (40) if —1 < logx < 0, and I(Z) = Iop(Xy, VM, 2) if log k < —1 (see (34)). It should be noted that due
to the property of “splitting” of problem (2)-(4) the effect of the second chemisorption parameter VM is observed
only at rather small ¢ (log x < —1), when the solution is practically independent of Yy (I = Io(Xy, VM, Z)).

The foregoing results allow one to obtain quite easily a solution of two-phase problem (2)-(4) at arbitrary
physicochemical, geometric, and hydrodynamic parameters, without computer calculations. The only limitation is
that the parameters Xy and Yy be within the first quadrant of the hydrodynamic plane.

NOTATION

{A], [B], [C™ ], concentrations of the absorbed component in the gas, absorbent, and product of reaction
(1) in the liquid, mole/liter; D, diffusion coefficient, m?/ sec; K, coefficient of distribution of material A; k, direct-
reaction constant, liter/ (mole-sec); I, length of the channel, m; U', phase velocity, m/sec; _[7, average phase
velocity, m/sec; U = U'/U, dimensionless phase velocity; Peg = Rﬁg/ Dyg, Pejiq = hﬁuq/ Dyiq, Peclet numbers for the

_ _ 1
gas and the liquid; ¢ = hUj;qK/RUy, ﬂz = RPey/hPejjq, dimensionless parameters; [ = I - ngngyg, ¥ =
0

1
f Uqudy“q, dimensionless integral flows of materials; tanh (x), hyperbolic tangent; erfc (x), error function; X,
0

I, dimensionless flows in the case of transfer resistance in the liquid and the gas, respectively (formulas (10) and
(17)). Subscripts: g, gas; liq, liquid; 0, value at the inlet; i, interface; lim, limiting.
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