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Two-phase film absorption complicated by an #reversible chemical reaction in the liquid is studied on the 
basis of a solution of diffusion transfer equations in the gas and liquid phases. The concentration distribution 
of  the soluble component and the reaction product on the interface is studied theoretically. The dimensionless 

diffusio~ flow is calculated numerically as a function of the length of the channel with arbitrary controlling 
parameYers. 

Formulation of the Problem. The general formulation of the problem of two-phase chemisorption of carbon 

dioxide gas (A) by solutions of amines (B) is formulated in [1 ] at a carbonization a < 0.5. In this case the following 

reaction takes place in the liquid phase between the compound being dissolved (A = CO2) and the absorbent (B = 

RNH2): 

A + B . C - + H  + , (1) 

where H + and C -  are ions of hydrogen and the bound state of A (RNHCOO-) .  A thin film (of thickness h) of 

absorbent solution (the inlet concentration is B 0) flows down uniformly under gravity over the wails of a plane 
channel (of width 2R) in contact with the gas flowing down (the inlet concentration is Co). The practically important 

case B0 >> KCo (or N = Bo/KC 0 >> 1), i.e., the chemical capacity of the absorbent is high, is considered. If it is 

taken into consideration that between the concentrations [B ] and [C-  ] local chemical equilibrium exists ( [B ] = Bo 
- [C-  ]), the two-phase problem of chemisorption can be reduced to two-phase absorption with nonlinear conditions 

of conjugation on the phase interface [ 1 ]: 

OC$ O2C~, dell q 02Cliq. 
Vg 

OXg Oy 2 0 X l i  q OYli q 
(2) 

at yg = Y l i q  - -  1; 

0( / Ci)t/2 tanh [d-M- (t - Ci) 1/2 ] 
= Pliq (1 - -  

i tanh ~ /M 

(O--~C / = - Pg (1 - Ci) 1/2 tanh [x / M (1 -- c i ) l / 2 l  

Oyg)i tanh ~ /M 
Cg.i 

(a) 
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Fig. I. Hydrodynamic planes X - Y and X N - YN" 

OC~=0 at y g = 0 "  OC - 0  at Yliq---0;  C g = l ,  C = O  at X = 0 ,  (4) 
Oyg ' OYli q 

where ~ = hqkBo/Dliq; Pliq = ~ tanh ¢'-M/N; Pg = tE2vt-M tanh v ~ .  

The dimensionless coordinates yg, Yliq, Xg, Xli q are related to the Cartesian coordinates x and y by the 

formulas 

y =  ( R - h )  y g = R -  hYliq, x =  (hPeliq) Xli q = (RPeg) Xg. 

The dimensionless concentrations of CO2 in the gas (Cg) and of the reaction product RNHCOO- in the liquid ( C )  

are determined as follows: 

_ B 0 
[A] = CoCg(xg, yg), [C ] =-~-C(XliqsYliq). 

The solution of problem (2)-(4) depends on the four dimensionless parameters e, fl, N, M or any four 

independent combinations of them. 

In what follows, parameters that contain phase velocities will be referred to as hydrodynamic (for example, 

e, E) and parameters containing the reaction rate constant k are called chemisorption parameters (M, Pg, Pliq). 

In [1, 2 ], in studies of two-phase chemisorption, it is recommended that the two hydrodynamic parameters 

(eN) and (e.fiN) be used (in physical meaning they are dimensionless capacities of the liquid [ 1 ]). For clear rep- 

resentation of the solution, the rectangular coordinate system XN - YN was introduced (the hydrodynamic plane 

for chemisorption: XN = log (eAr), YN = --log (tEN)).  The linear relation X N = X + log N, YN = Y -- log N exists 

between these two coordinates and the corresponding hydrodynamic coordinates for two-phase absorption X - Y 

[3 ] (X ffi log e, Y = - log  eEt, where e and eft are capacities of the liquid phase in absorption). This means that the 

planes (X, Y) and (XN, YN) are shifted by log N along the axes (see Fig. 1). 

Earlier [1, 4], the solution was studied in the second and fourth quadrants of the hydrodynamic plane 

XN -- YN, i.e., at small (eN <_ 1, tEN <_ 1) and large (eN > 1, eflN > 1) capacities of the liquid. 
In the present work a solution of (2)-(4) is obtained in the first quadrant, where the inequalities eN > 1, 

eflN < 1 (XN > O, YN > 0) are satisfied. At any point of the hydrodynamic plane XN YN, two other parameters 
(they are chosen to be chemisorption ones) should "run through" all admissible values from zero to infinity. It is 

evident that the choice of chemisorption parameters is arbitrary; however, following [I, 4 ], the dimensionless 
thickness of the film ~ (M is the Damk~hler number) will be chosen as one of them. Studies carried out in the 

second and fourth quadrants of the hydrodynamic plane show that ~ has a little effect on the solution. The 

establishment of one or another absorption regime (kinetic absorption, an instantaneous chemical reaction, 

resistance in either of the phases) in the two-phase system depends mainly on the other chemisoplion parameter 
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(x), which was called controlling. The form of this parameter depends on the quadrant  of the hydrodynamic  plane 

in which the considered point XN and YN lies: for example, in the second quadrant  x -- e l iq [1, 2 ], and in the fourth 
one ic ffi Pg [4, 51. 

In what follows, from a theoretical s tudy of the solution in different areas of the first quadrant ,  we find an 

expression for x in this quadrant. Here, as the main calculated characteristic of chemisorption, we use the integral 

dimensionless flow expressed in terms of the concentration of CO2 in the gas (/). This flow is related to the 

corresponding flow ~ expressed in terms of the concentrations in the liquid by the material-balance equation 

1 1 

I -- 1 - f lJsCgdyg = e N  f UliqCdYli q =- e.IV~. (5) 
o o 

We investigate the solution of general problem (2)-(4) at different points of the first quadrant  where the 

solution is known or can be obtained analytically. 

The Solution on the Axis Y~v (eN = 1, eflN <_ 1) [2]. Since the positive axis Y~v belongs simultaneously to 

the first and second quadrants,  on this axis the solution can be obtained as the particular case of the solution for 

the second quadrant at eN ffi 1 [1 ]. Here, Pliq is the controlling parameter. As the longitudinal coordinate, we chose 

the dimensionless coordinate Z, which, in view of the equality eN ffi 1, is expressed as follows: 

Z = [  P'iqx'iqatPliq<12 = [ Pgxg at x < 1 , 2  (6) 

PliqXiiq a t  Pliq > 1 PliqXliq at x > I ,  

where x is the chemisorption parameter, determinmed from the formulas 

tC ~ P l iq  --- P ~  ( 7 )  

~N (e/3N) 2" 

As was shown in [1 ], with a large chemical capacity of the absorbent (N >> 1), at a certain distance from 

the inlet to the channel,  on the interface, the concentrations always satisfy the conditions Cg.i "" l ,  Ci << I. This 

section of the channel  was called the initial section of chemisorption. Here,  the chcmisorption resistance is 

concentrated in the liquid phase, and reaction (1) can be considered a chemical reaction of the pseudofirst order  

(B -- B0). The solution of this single-phase problem was found in [6 ]. In particular, for the dimensionless diffusion 

flOW / (X) ,  a t  Xli q >~" 1/M, a linear relation was obtained, which is expressed in the adopted notation as 

I "- (eN) PliqXliq = PgXg. (8) 

This is the regime of a rapid chemical reaction with transfer resistance in the liquid phase. In the dimensionless 

coordinate Z of (6), relation (8) has the form 

I =  
Z at to_< 1 ,  

Z 
at x > l .  

(9) 

Formulas (9) are true until the inequality Z << 1 is satisfied. 

A monotonic increase in the concentration Ci(Z) from zero to unity in a section of dimensionless length 

Z - 1 is a characteristic property of the solution of problem (2)-(4) on the vertical line XN --- 0. Outside this section 

(Z >> 1), when the concentration on the interface approaches saturation (Ci =~ 1), the dimensionless flow I(Z) is 

determined analytically: 

I ~ eN ~'i = eN 
2 

2 exp - n + Xli q 
n = 0  

(1o) 
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This means that in the system an instantaneous chemical reaction starts. Under  this condition, at the interface the 

absorbent  concentration is (B) i * 0 [7, 8 ]. Subsequently,  this condition is preserved at any  Z. 

Thus ,  it is sufficient  to obta in  the solut ion of problem (2)-(4)  only in the res t r ic ted  range  of the 

dimensionless length Z - 1 in the so-called section of two-phase chemisorption. Outside this section (at small and  

large Z),  the dimensionless flow I(x) is determined analytically from formulas (9) and (10), respectively. In the 

section of two-phase chemisorption, where in the general  case diffusion interaction of both phases should be taken 

into consideration, the function I(Z) is formally a four-parameter  function that depends on XN, YN, x, and V--M. 

However, as was shown in [2 ], everywhere inside the second quadrant ,  for X(Z) (and, consequently,  also for I(Z) 

on the axis YN >- O, where eN = 1), the number  of controlling parameters  can be decreased. 

Indeed,  at small x (in practice, log x _< 1), the function I(Z) is two-parameter ,  since it coincides with the 

solution of the ord inary  differential equation 

tanh 

dZ = 1 -  
tanh q M 

( i - 0 ,  z (o)=o.  (I0 

This solution is denoted  subsequently by Io(XN, V'-M, Z). On the axis YN > 0, it depends only on V-M, and  at 

large and small ~ it can be obtained analytically [9 ]: 

Io (0, Yr M ,  Z) = 
Z/(1  + Z) at X / M ~ O ,  

2 
(12) 

The  difference between these limiting curves is within 10%. In view of the monotonic dependence  of I 0 on V-M, it 

can be stated that on the axis YN the effect of the parameter  ~ on the solution is weak. 

At moderate  x (parameters log r _> - I ) ,  the function I(Z) is three-parameter ,  depending only  on XN, YN, 

and x. This follows directly from the definition x = Pliq = ( x/--~ tanh (vrM)) /N and the condition N >> 1. In this 

case, in the general formulation (2)-(4) ~ * o% tanh IV-M(1 - c i ) l /2 ] / t anh  (d-M) --- 1 can be assumed.  T h e  

corresponding solution will be denoted subsequently by I(XN, YN, x, Z) -~ I(XN, YN, 0% x, Z). Thus ,  at f ixed XN, 

YN, it is sufficient to investigate the general  problem only at V-M =~ oo. 

At small x the corresponding solution I(XN, YN, x, Z) ~ Io(XN, ~o , Z), i.e., I(XN, YN, x, Z) cont inuously  

transforms into Io(XN, V-M, Z).  In [2 ], this characteristic of I (X  N, YN, 'd-M, x, Z) is called the proper ty  of 

"splitting." 

T h e  three-parameter  function I(XN, YN, x, Z) admits substantial  simplification not only  at  small but  also 

at ra ther  large x. In this case, in the section of two-phase chemisorption (Z ~ 1) there  are  diffusion bounda ry  layers  

in both phases, and the problem is reduced to a two-phase formulation: 

.OC$ = O2C$ OC O2C 

Ug OZ OYg.i ' Ul iq  O---Z - OYliq. i ' 

OC 

OYliq.i 
- -  (1  - -  e l )  1 / 2  Cg . i  , 

OC$ = _ OC 

ayg.i (MN) ayliq, i , 
(13) 

0C$ = 0 
aygi 

a c  
at Yg.i = o o ,  dYliq .i 

C g =  1,  C = O  at 

- 0 at Yliq.i = 00 , 

Z = 0 ,  
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where similarity variables are introduced in the transverse (Yg.i = flPiiq( 1 -Yg) ,  Yliq.i  ---- Piiq(1 --Yliq)) 
longitudinal (Z = p2qXli q) directions. 

The solution of problem (13) is denoted by llim and is represented in the form 

and 

I = Ilim ---- eN ~:lim (YN, Z) I X P u q  = K lira (YN, Z) (x >> 1) (14) 

o r  

IK = Ylim (YN, Z) , (IS) 

oo 

where the function Xum(L0 - f CUliqdYliq. i i s  the integral flow in the liquid and depends only on Y,v. At Z >> 1, the 
0 

asymptotic value of this function is ( 2 / q - ~ ) ~ .  

The Solution on the Axis XN (eN >__ 1, e~N = 1 [5]. Since the positive axis XN belongs simultaneously to 
the fourth and first quadrants, the solution on this axis can be obtained as the particular case of the solution for 

the fourth quadrant at YN = 0 (saN= 1) [5]. Here Pg is the controlling parameter, which at e~N= 1 coincides with 

x determined from formulas (7). Accordingly, the coordinate Z introduced in terms of x$ and Ps for points of the 

fourth quadrant coincides with definition (6) (the second equalities) on the considered axis, since 

z = [ x g P g  at PT.<I = [ Pgxg at x < l , 2  (16) 

xd,  [ at Pg > 1 P ,iq at , > 1. 

It can easily be shown that in the initial chemisorption section (Cg.i -~ 1, Ci << 1) the dimensionless flow I(Z) is 

the linear function (9). 

A monotonic decrease in the surface concentration C$.i(LO from unity to zero in the section Z -  1 is a 

characteristic property of the solution of general problem (2)-(4) on the horizontal line YN = O. At Z >> 1, when 

Cg.i * 0, the problem becomes a single-phase one, and I(x) is determined analytically: 

2 2(  ) oxp n+ 
n = 0  3'[ n 

At these large Z transfer resistance is fully concentrated in the gas phase, and in the system maximum absorption 

of CO2 occurs. This condition is preserved subsequently at any x. 

Just as on the axis YN > O, in the region of transition from rapid reaction (8) to maximum absorption (17), 

i.e., in the section of two-phase chemisorption ( Z -  1), it is sufficient to study the solution of general problem 

(2)-(4) only for the case V-M =~ o% since an effect of ~ on I(Z) is observed only at small x = Pg(log K --< --I),  

when I(Z) coincides with the solution of two-parameter problem (11): I -- Io(XN, d--M, Z). In the general case, on 

the axis X,v -> 0 the effect of d-M on this function is also weak and decreases monotonically as XN increases. It is 

maximum ( - 1 0 % )  at XN = 0 (see (12)) and almost disappears at XN >-- 0.5. In the latter case the following 

analytical formula is valid: 

I 0 -- 1 - exp ( -  Z) ,  (18) 

which is independent of any parameter. 
In the other limiting case, at rather large K, in the section Z - 1, in both phases there are boundary layers, 

and, consequently, 1(2:) can be obtained from simplified formulation (13), in which it is necessary to set eflN = 1. 
In this case I(Z) is proportional to K, and the product gI is independent of any parameter in (14). It should be 

noted that simultaneous satisfaction of the conditions Cg.i :~ 0, Ci =~ 1 at Z >> 1 is a characteristic property of the 
solution of (2)-(4) on the axis XN (YN --- 0). This means that in the system a regime is deveIoped that is 
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simultaneously maximum absorption (17) and instantaneous chemical reaction (10). It can easily be shown that 

this occurs in the section Z >> 1, xg << 1. For the two regimes the dimensionless flows coincide in this region: 

However, unlike maximum absorption, instantaneous chemical reaction takes place only in the section 

Z>> 1, x$<< 1. As shown in [5], in the region x$ >__ 1, the gas phase is fully depleted (I 0 = 1), and the 

concentration Cl(x) deviates from unity. 
The Solution of  the Problem near the Origin of Coordinates (X,v = Y~¢ = 0). In this area  of the 

hydrodynamic plane, characteristics dimensions for the gas (RPe$) and liquid (hPeliq) phases coincide (eN 
= eflN -- f12 = 1), and, consequently, the dimensionless lengths Z introduced for the second and fourth quadrants, 
respectively, also coincide (see (6) and (16)). At Z >> 1, the conditions Ci * 1, C$.i =:' 0 are satisfied almost 
simultaneously, and therefore, in the system, chemisorption occurs, which can be considered both an instantaneous 

chemical reaction and maximum absorption. It is evident that in this case the equality lo(x $) = cN~i(Xli q) is valid 

and is not violated as the length of the channel increases further. 
We investigate the solution of system (2)-(4) at interior points of the first quadrant, where the inequalities 

eN > 1 and ¢45N < 1 are satisfied. 
The Solution at t 2  << 1. The relation fix = RPeg/hPeliq remains constant on inclined straight lines parallel 

to AC (Fig. 1). We obtain a series of analytical solutions on the straight lines 132 = const << 1 for the following 

cases: a) Xg << 1; b) Xg >> 1, Xliq << 1; c) Xliq >> 1. 
It is evident that in case (a) x$ << 1 (consequently, Xnq << 1), there are boundary layers in both phases. 

In the initial section (Cg.i = 1, Ci << 1), a solution of (2)-(4) exists in the form [1 ] 

1/2 2 { r / 2 / 4 ) -  V'-~- r/g erfc (r/g)] + . . . .  (19) 1 - C z = Ps (xz) ~ -  exp ( -  2 

C "~ Pliq (Xliq) 1 /2  2 ~  {exp 
where r/z = (1 - yg)/q'-x-g$, r/u q = (1 - yuq)/x4~uQ.__ 

On the surface of the film at Z << 1 

(--  r /2q/4)  -- ~ ] (20) 2 rhiq erfc (rhiq) + . . . .  
] 

Cz. i =  1 - P z  2 _ ~ =  1-(e13N) 2 V~-; (21) 

~ _  2 xl~-" (22) Ci = Puq v~- 

Here Z = e~liqXliq. Since Ci < 1, from (22) it can be suggested that at Z =~ 1 the concentration Ci =~ 1. In the latter 

case at Z >> 1 a solution of (2)-(4) exists in the form 

1 -- Cg = (~flA r) e r fc  (~/g) , C = e r fc  (~]liq) , (23) 

and the concentrations on the interface are 

Cg.i= l - e 1 3 N ,  C i =  1. (24) 

Formulas (23) and (24) are not asymptotic and are valid on a limited interval of length xg << 1. Sub- 

sequently, at a distance from the inlet xg >> 1, Xli q << 1, when the diffusion layer grows in the gas, the equality 
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Cg = Cg.i(x) is satisfied in this region formulas (23), (24) for the gas phase become invalid. The concentration 

distribution in the gas can be obtained from material-balance equation (5): 

Cg.i = 1 -  eN 2 ~F~xli q at xg>> I ,  Xli q << I .  (25) 

It follows from (24) and (25) that in the gas phase, in the section xg >> 1, Xli q --< 1/(eAr) 2 < 1, the concentration 

falls from an intermediate value (1 - eflN) to zero. Subsequently, 1/(eAr) 2 << Xliq, in view of the fact that  the gas 

phase is fully depleted (Cg :* 0, I ~ 1), and in the liquid the distribution C(x, y) is obtained from a simplified 

single-phase formulation: 

l 2 1 ac = ~,a2c f UnqCayii q = - -  (26) 
Uiiq OXli q O:~q 0 eN 

It can be verified that  in the section Xli q << 1 a solution of this problem exists in the form 

C _ 
2 / 4 )  1 1 1 1 1 exp ( -  t/iiq 

, C i _ ( 2 7 )  
t a r  ~ ~Fxxli q t N  ~ ~-xxli q 

At Xli q >> 1, when the boundary layer grows in the liquid as well, the solution of (26) is trivial: 

1 
C i = ~ " ~ .  (28) 

We find necessary and sufficient conditions whose satisfaction ensures approximations (19)-(28). In view 

fact that the transition from a rapid reaction to an instantaneous one occurs at Z - 1 (Xli q - I/P~q).. (see (21), of  the 
(22)) and the transition to solutions (27) and (28) occurs a t  Xli q - l / ( eN)  2, it can be concluded that a necessary 

condition for the existence of the suggested mechanism of absorption is satisfaction of the inequality: 

l /p2q << I / (eN)  2 or r >> 1. (29) 

It can easily be seen that the last condition is simultaneously sufficient. This will be shown for distances 

xg >> 1 from the inlet, since at xg < 1, the approximate equality Ci = 1 (Z >> 1) is. unquestionable (see (24)). 

Integrating the transfer equation in the gas phase (2) with respect to yg from zero to unity,  we have 

Oyg)l = Oxg at x g > > l .  

Substituting the above equality into boundary condition of conjugation (3), we obtain an equation for C(x): 

-- dCg'i / C g  i 
dxg 

= Pg (1 - Ci) 1/2 tanh [ ~  (1 - C i l /2 l )  , 

tanh 
(30) 

where Cg.i(x)  is determined from (25). 

In the region Z >> 1 at x >> I, the approximate solution of Eq. (30) is equal to 
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It can be seen that Ci(x) = I almost everywhere at  Xli q _< (yr/4)(eN) 2. A noticeable deviation of Ci from unity occurs 

only in the region xji q >> 1/ (eN)  2 (see (27)). 

We have proved that the mechanism of absorption suggested above really takes place at K >> 1 and that 

this condition in necessary and sufficient for its existence. As can be seen, at ra ther  large x >> 1, in the section of 

two-phase chemisorption (Z = 1), the function I(Z) depends only on YN and x. In the case in which boundary  
2 

layers exist in both phases,  the dimensionless coordinates Z ffi PliqXliq, Yliq.i = Pliq(1 - Yliq), and Yg.i ffi Pliqfl (1 

- y g )  can be introduced in (2)-(4).  After that,  we arrive at simplified formulation (13) and,  consequently,  at 

formula (15). Since at x >> 1, in the section of two-phase chemisorption (Z ~ 1) the inequali ty I << 1 is valid, this 

implies that the gas phase is mainly depleted at distances Z >> 1 from the inlet in the case of instantaneous chemical 

reaction (10). 

Th e  solution of general  problem (2)-(4) will be studied at f12 << 1 and  in the case of ra the r  "weak" chemical 

interactions (x << 1). In this case substantial simplifications can also made. It can be assumed that at  ra ther  small 

x << 1, in the initial sect ion of chemisorpt ion (Cg.i = 1, Ci << 1), the inequal i ty  Xuq >> I / ( e N )  2 (o r  xg >> 1/  

/(eflN) 2 > 1) is satisfied. This  inequality implies that the boundary  layer  grows through the ent ire  gas phase and,  

consequently, Cg = Cg.i(x). It is evident that in the initial section the concentrat ion distribution is de termined  by 

formulas (20) and (22). Here,  it is assumed that Xli q < 1. Taking (5) into consideration and introducing the 

dimensionless coordinate  Z ffi Pgxg, we obtain 

Cg.i "-" 1 - Z ,  C i = ~ 2 ~/~ at Z >> 1 , Xli q < 1 . ( 3 1 )  ¢-y 

If it is assumed that in the section Z - 1  the gas phase is depleted almost completely (Cg.i ~ O, I ~, 1), 

then in the region Z >> 1, in the liquid, the concentration distribution can be obtained from simplified single-phase 

formulation (26). In particular, on the interface (see, (27), (28)) 

1 1 l = ¢ - ~  1 l 

t N  ¢'~ Xli q f~- ~/Z 

C i ( Z ) =  1_~ at X n q > > l .  

eN 

at Z >> 1,  Xli q < 1,  
(32) 

As can be seen from formulas (31) and (32), at Z = 1, on the curve Ci(Z) a maximum with order  of 

magni tude  1 > Ci.max = ~/x >-- 1 /eN is obse rved .  Th i s  m e a n s  tha t  wi th  r a t h e r  weak  chemica l  i n t e r ac t i ons  

instantaneous chemical reactions (Cl - 1 )  are  not observed at any  lengths of the channel .  Since 1 / e N  is an 

asymptote for Cl(x), and at x > 1 the equality Ci.max "" 1 holds, it can be assumed that  the condition ~ > 1 / e N  
is sufficient for the existence of a maximum on the curve Ci(x). If the reverse inequality ~ < 1 /eN  is satisfied, 

t h e  maximum disappears from this curve and the surface concentrat ion becomes a monotonically increasing function 

of Z. In this case it can easily be shown that in the section of two-phase chemisorption, boundary  layers completely 

occupy both phases,  the flow I(Z) satisfies problem (I 1), and  the following equal i t i esare  satisfied: 

C i --" I 0 (Z ,  XN,  vr--M)/eg,  Cg.i "" 1 - I 0 (XN,  xI-M, Z ) .  

In this case the chemical reaction has the same rate throughout  the entire thickness of the film (the kinetic regime).  

It should be noted that at x << 1, the equality I = Io(XN, ~ ,  Z') is always true, irrespective of the presence 

of a maximum on the curve Ci(Z). 

The  foregoing analysis suggests that on the straight lines r 2  = const << 1 (just as on the vertical YN >-- 0 
and horizontal XN >-- 0 lines) the dimensionless complex x has all the properties of a controlling parameter .  The  

type of absorption regime that  will be established in the two-phase system depends on its value, and the effect of 

the second chemisorption parameter  ~ can be virtually neglected. 

Summarizing the foregoing theoretical study, it can be suggested that irrespective of K, beyond the section 

of chemisorption (Z >> 1), inside the first quadrant  the dimensionless flow I(Z) is de termined analytically,  and 
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I (Z) ~ min {eNY. i (Xliq) , 10o (Xg)} at Z >> 1. (33) 

The above relation answers the question about the possibility of realization of an instantaneous chemical 

reaction. It is evident that this regime occurs only for rather strong chemical interactions 0c >> 1) at distances 

Z >> 1 from the inlet. It should be emphasized that it is preserved almost until complete depletion of the gas phase: 

I = eN~ i _< 1. In particular, at the boundary between the first and second quadrants (XN ffi 0), irrespective of x, 

the inequality e/V~ i ~ I** is satisfied, and consequently, I ~, eN~i(Xli q) if Z >> 1. This is reasonable since this 
transition is observed everywhere inside the second quadrant [1 ] and, consequently, for points on its boundary. 

Accordingly, at YN " 0 the reverse inequality I** < eNE i is satisfied, and consequently, I ~, I**(xg) if 

Z >> 1. This transition is typical of the whole interior of the fourth quadrant [51. 

In a numerical investigation of problem (2)-(4), in the section of two-phase chemi.~orption (Z = 1), it is 

sufficient to consider only the case V ~  :* o,, i.e., to obtain a solution of just the three-parameter problem I (XN,  

Y~V, x, Z). The effect of the parameter V ~  is observed only at x << 1 (in practice, at log x < - 1 ) ,  where I(X~z, 

YH, to, d-M, Z) = lo(Xiv, d-M, Z). This follows directly from the last equality and definition (7) of ~c expressed in 

the form d-M tanh d-M -- NeNx.  This property of the solution of (2)-(4) was called the property of "splitting" [1, 

4]. 

Numerical Approximation of the Two-Parameter Problem (11). Equation (11) was integrated by the 

Runge-Kut ta  numerical method in [51 for the following ranges of the controlling parameters: -0 .4  < log ¢-M _< 

< 0.6, 0 --_ X~t -< 0.5. The results of the calculations were presented in the form of the following approximating 
formula: 

I 0 (XN, V'-M, Z)  = I 0 ( X  N, O, Z) + (log ~ + 0.4) [I0 (XN, o% Z) - Z 0 (XN, O, Z)  l 
(34) 

at - 0.4 _< log d-~ _< 0.6, 

where the analytical expressions for the corresponding flows for large (d-M * oo) and small (d-~ ~ 0) ~ values 

of are equal to [9 ] 

1 - eN [1 - (1 - 1/eN)1/212 exp [ -  (1 - l / e N ) l / 2 z l  
(35) 

at v ' - ~  ~ 0o , 

1 ex0[ 
I 0 ( X ,  0 ,  2:) = at , / ~  ~ 0 .  ( 3 6 )  

In spite of the fact that the above formulas seem bulky, the difference between them is not large: it is maximum 

(~, 10%) at Xjv - 0 (see (12)) and decreases monotonically as this parameter grows. At X~v > 0.5 this difference 

almost disappears, and formula (18) is valid. A check shows that at log ~ _< -0 .4 ,  the relation Io ~ Io(XN, O, 

Z )  holds, and at log V ~  >__ 0.6, the relation Io ~ Io(Xz¢, 0% Z) is valid. 
A Numerical Study of the Three-Parameter Problem (~/-M ~ ~o). The dimensionless flow I (XN,  YN, x, Z)  

was calculated at discrete paints of the first quadrant 0 <_ XN < 1, 0 _< YJv <- 1 (AXe,-- AXt¢ ffi 0.125) by the method 

described in [1 ]. The solutions obtained are almost the same as the corresponding ones for the fourth quadrant 

13 ]: results of calculations of I(Z) at any fixed point of the hydrodynamic plane will be expressed in the form of 

one-parameter curves (the parameter x). Here, it is necessary to distinguish between the cases of "large" (log 

x _>_ 0) and "small" chemical interactions (log x _< 0). In the first case the logarithm of the product log (x/) of (14) 

is plotted on the ordinate, and in the second, log l(Z). The abscissa is log Z. 

In the case of "large" chemical interactions (log tc > 0) the calculations show that the effect of XN and YN 

on xl(Z) is not very strong and in the general case it is monotonic, because of which it was possible, just as in [5 ], 
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Fig. 2. Numerical calculation of the dimensionless flow at log tc _> 0 on the 

horizontal lines YN = 0 (a), 0.25 (b), 0.5 (c), -> 1 (d): even curves are XN = 

0, odd curves are XN = 0.25; 1, 2) log x--O; 3, 4) 0.2; 5, 6) 0.4; 7, 8) >0.6; 

inclined lines I and II are asymptotic relations (9) and (15), respectively. 

to present clearly the functions log 0c/) at constant YN in separate figures. For YN = 0, 0.25, 0.5, 1 this shown in 

Fig. 2. 
As can be seen, all the curves log 0c/) are monotonically increasing relative to log Z, whose asymptotic 

values are known: if log Z < - l ,  then xI  -_ Z (curves I); if log Z _> log (p2q/eN) --" 2t¢, then x l  ~, x, since at 

Xli q > - - l / (eN) 2 the function I =~ 1 (25). Moreover, at rather small Z (log Z _< log Z*), the dependences xI  ~, 

Zum(YN, Z) (curves 8 in Fig. 2), i.e., in accordance with the general theory we arrive at approximation (14), when 

it is possible to assume that boundary layers exist in both phases. The value Z* at which this transition occurs 

depends mainly on x and increases monotonically with this parameter. In the case of rather intense chemical 

interactions (in practice, at log x >-- 1), in the entire section of two-phase chemisorption - I  < log Z <_ 1.5, the 

equality x l  = Y i(YN, Z) is satisfied, and consequently, numerical calculations are not needed since at log 

Z _< 1.5 curves 8 can be used, and at log Z >_ 1.5 the approximation Zi =~ (2/vr~-)v~ always holds (curves II in 

Fig. 2), i.e., in accordance with the general theory I = eN~i(Xli q) (10). This regime is an instantaneous chemical 

reaction. 

We study the effect of the hydrodynamic parameter YN on the solution I(XN, YN, x, Z) at log x > 0. 

Numerical calculations show that it occurs only at YN --< 1. At rather large YN, in formulation (2)-(4), assuming 

formally eNfl :~ O, we can neglect transverse changes in the concentration in the gas phase, since the concentration 

Cg.l starts to deviate from unity at distances xg >> 1 from the inlet (see, for example (21), (24), and (25)). As a 

result, system (2)-(4) is reduced to a single-phase problem: 

OC 02C (37) 
2 • Uliq Oxli q 0Yliq 
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0(_::__, ) = ( l - c i )  ~/2 i Pliq Cg.i (x)  at Yliq : l ,  \,,-,liq! 
(38) 

OC 
0Yli q - 0 at Yliq = 0 ,  C = 0 at Xli q = 0 ,  

where Cg.t = 1 - ~:N~(Xliq). With account for definitions (16) and (7) for Z and r , it can easily be seen that  at 

ra ther  large eflN >> l ,  the dimensionless flow I(Z) actually depends on just one hydrodynamic  parameter  XN. 
Calculations show that  everywhere above the horizontal Hne AB the plots shown in Fig. 2d can be used. Analysis 

of the curves presented in Fig. 2 shows that in the range 0 _< Y,v -< l ,  the effect of YN on the solution is not  very  

strong, and with high accuracy a l inear approximation can be used for in termediate  YN. As regards  the effect of 

the second hydrodynamic  parameter  XN on the solution at log x >_ 0, it can easily be seen from Fig. 2 that it is 

observed in practice only in the narrow band 0 _< X,v <- 0.25. In the general  case it can be assumed that  the effect 

is also l inear and  the approximating formula 

log [xI (XN, YN, x, Z) ] = log [ r l  (0, YN, x, Z) l + 4XN {log [xI (0.25, YN, x, Z) ] - 

-- log [xI (0, YN, x, Z) ]} at 0 <- X N <_ 0.25 (39) 

is valid. 

At any fixed YN and x, in the range XN > 0.25 the function I(XN, YN, x, Z) ceases to depend on XN and  

coincides with l(oo, YN, x, Z) (curves 1, 3, 5, 7 in Fig. 2). Such solutions that  do not depend on XN were denoted  

by IyOc, YN, Z) in [4 ]. Just as in the cited work, it can be easily shown that this function is a solution of the 

simplified diffusion formulation depending only on YN and x and obtained from (2)-(4) formally at eN ~ oo. 

Th e  domain of definition of the function Iv(Z) depends mainly on r .  For example,  as was noted above, at 

log x > 0, this is the half-band XN >- 0.25. At ra ther  small x (in practice, log ~c < - 1), when in accordance with 

theoretical results (1 I) the approximation l(X~v, YN, x, Z) -- 10(Xt¢, 0% Z) is valid, the domain of definit ion of I y  

is XN =" 0.5 (see (18) and (34)), i.e., it can be assumed that as x decreases,  the domain of definit ion of Iy(YN, 
x, LD is narrowed in the general case. However, it can easily be seen that the maximum difference between the 

functions log [riOt, 0.25, YN, Z) ]  and log [xl(x, 0, YN, Z) is not very large (less that 10%),  so that  at log 

x >_ 0, everywhere  inside the first quadrant  I -- Iy (curves 1, 3, 5, 7 in Fig. 2) can be assumed in practical 

calculations, i.e., the effect of XN on the solution can be neglected. 

As concerns "small" chemical interactions (log x < 0), just as was shown in [2, 4 ] for the second and  fourth 

quadrants,  in this case numerical calculations are  absolutely unnecessary,  since at any point of the hydrodynamic  

plane XN, YN, I (Z)  can be expressed with sufficient accuracy in terms of the corresponding functions for two values 

of the chemisorption parameter  x: log x ,- 0 and log x = - 1 by means of the approxiniation formula 

log I (r, XN, YN, Z) = log I (1, XN, YN, Z) + (log x) [log I 0 (X N, Z) - 

-- log I (1,  Xt¢, YN, Z) ] at -- 1 _< log r _< 0 ,  (40)  

where I(1,  XN, YN, Z) is the target function at log x -- 0 (for example,  for XN = 0 and  0.25, curves 1 and  2 in 

Fig. 2). At fixed YN, for any XN these dependences can be determined from formula (39) if 0 -< X N < 0.25, while 

if XN > 0.25, then I(1,  XN, YN, Z) -- I(1,  oo, Z) = I 0 (the odd curves in Fig. 2). As was noted above, in practice, 

the dependence on XN can be neglected and the last equality can always be used. As an example,  in Fig. 3 one 

can see typical  calculat ions of I(r, XN, YN, Z) at  t he  cen t ra l  point  XN = YN = 0. As c a n  be  s e e n ,  a t  

- 1 _ log x __< 0, the effect of log x on the solution is almost linear, and at ra ther  small log x _< - 1 the dimensionless 

flow coincides with the two-parameter function Io(XN, Z) (curve 3). Th e  absolute error  in calculation of I(X, XN, 
YN, Z) from formula (40) I(1, X N, YN, Z) -- Iy is usually within 0.02. 
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Fig. 3. Numerical calculation of the dimensionless flow at log x <_ 0 at  the 

point Xjv = 0, Y~v = 0: I) log X = 0, 2) --0.4, 3) log X _< --1; inclined straight 

line I is asymptotic relation (9). 

Conclusions. A theoretical and numerical s tudy  of two-phase chemisorption was carried out in the first 

quadrant of the hydrodynamic plane (X N _> 0, Y,v > 0) at large chemical capacities of the liquid phase (N >> 1). 

The features of absorption were found for this region. 

It is shown that the occurrence of one or another  regime in the system that is, as a rule, known from the 

l i terature depends  mainly on two criteria: the dimensionless length of the nozzle device Z of (6) and  the 

chemisorption parameter r of (7). 

In particular, at small Z (log Z _< - 1 )  chemisorption resistance is fully controlled by the liquid phase (Cg.i 

_- 1), and the concentration of the absorbent is [B] -- B 0. The latter means that - these  "short" channels are 

characterized by a chemical reaction of the pseudofirst order. A general s tudy of this problem (at arbi trary x) was 

carried out in [6]. For the particular ease V-M >> 1 an analytical solution is known [10]. 

In the other extreme case (where log Z >_ 1), solution of the problem of chemisorption in two-phase 

formulation (2)-(4) is unnecessary, since the dimensionless flow 1(x)  is determined analytically by (33). It can be 

stated that in a sense at large Z the solution in the first quadrant takes an "intermediate" position between the 

corresponding solutions for the second [ 1, 2 ] and fourth [4, 5] quadrants.  It should be remembered that  in the 

second quadrant  at Z >> 1 the transition I = ~  cN~i(Xli q) occurs (an instantaneous chemical reaction) and in the 

fourth quadrant  the transition I ~ l®(x$)  takes place (maximum absorption, transfer resistance is concentrated in 

the gas). Both transitions occurred irrespective of the valve of the controlling parameter x. 

In the region considered (the first quadrant) one or another transition is observed, depending on the value 

of K: at log K >-- 0 the flow I = ,  cN~i(Xliq), while at log K <-- O, I * IO(Xg). 

Thus,  it is sufficient to carry out numerical studies of two-phase chemisorption for the limited range 

- 1  __- log Z < 1 in the so-called section of two-phase chemisorption. Diffusion interaction takes place only in this 

region, i.e., on  the phase interface the concentrations Cg.i or  Ci cannot be constant.  As follows from general 

formulation (2)-(4), formally, the target function, which is equal to I(Z) if log K --< 0 and  to x I ( Z )  if log K >-- O, 

depends on the four dimensionless parameters XN, YN, K, V-M; however, as was shown by the foregoing theoretical 

s tud ies  a n d  numer ica l  ca lcula t ions ,  depend ing  on the  concrete  values of these  pa r ame te r s ,  subs tan t i a l  

simplifications can be made, which consist in the following: 

1. The effect of the hydrodynamic parameter YN is not very strong and is observed only in the limited 
range 0 _< YN -< 1. Above the horizontal line AB (Fig. 1), one can use the limiting solution I x ( X N ,  K, Z )  (see (37), 

(38)): the plots in Fig. 2d if log K >-- 0, or formula (40) if log tc < 0. 

2. In the general  case the second hydrodynamic  parameter  XN has an  effect in the l imited range  

0 < X N < X u y .  Its width (XNy)  depends mainly on the chemisorption parameter K: at log K > 0, X N y  .- 0.25 (see 

Fig. 2), and as K decreases (in the range log x < 0) X N y  increases monotonically, reaching its maximum X N y  = 

0.5 at log K _-< --1 (see (18), (34)). 
3. The chemisorption parameter tc exerts the main effect on the dimensionless flow I ( Z ) .  At rather high 

values of it (in practice, at log K _> 1), tcI = Xlim(YN, K, Z) (curves 8 in Fig. 2, formula (15)). In the range 
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0 < log r < 1, the plots shown in Fig. 2 can be used with the help, if necessary, of linear approximations in log x, 
YN, and XN. It should be noted that for most technological calculations the effect of the hydrodynamic parameter 

XN can be neglected in the region log r > 0, i.e., approximation (39) is practically the same as Ir(x,  YN, Z). In 
the case of "weak" chemical interactions (in practice, log x < 0), in the general case XN cannot be neglected; 
however, in this region numerical calculations are unnecessary since I(Z) can be obtained from the approximating 

formula (40) if - 1  < logx < 0, and I(Z) -- IO(XN, V-M, Z) if logx < - 1  (see (34)). It should be noted that due 
to the property of "splitting" of problem (2)-(4) the effect of the second chemisorption parameter V-M is observed 
only at rather small x (log x < - 1 ) ,  when the solution is practically independent of Y,v (I  -_ Io(X,v, v ~ ,  Z)).  

The foregoing results allow one to obtain quite easily a solution of two-phase problem (2)-(4) at arbitrary 
physicochemical, geometric, and hydrodynamic parameters, without computer calculations. The only limitation is 
that the parameters XN and YN be within the first quadrant of the hydrodynamic plane. 

N O T A T I O N  

[A ], [B ], [C- ], concentrations of the absorbed component in the gas, absorbent, and product of reaction 

(t)  in the liquid, mole/liter; D, diffusion coefficient, m2/see; K, coefficient of distribution of material A; k, direet- 

reaction constant, liter/ (mole- see) ; l, length of the channel, m; U', phase velocity, m/see;  U, average phase 

velocity, m/see; U = U'/-U, dimensionless phase velocity; Peg = R-UglDg, Peiiq - -  ~liq/Dliq,  Peclet numbers for the 
1 

gas and the liquid; • = h-UliqK/R-Ug, f12 = RPeg/hPetiq, dimensionless parameters; I = 1 - fUgCgdyg,  ~. = 
o 

I 
fUuqCdYuq , dimensionless integral flows of materials; tanh (x), hyperbolic tangent; erfc (x), error function; ~i, 
0 

I®, dimensionless flows in the case of transfer resistance in the liquid and the gas, respectively (formulas (10) and 

(17)). Subscripts: g, gas; liq, liquid; O, value at the inlet; i, interface; lira, limiting. 
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